Synthesis and Electronic Spectra of Some Bis-heterocyclic Methine Cyanine Dyes

A. I. M. Koraiem, Kh. M. Hassan & R. M. Abd el All

Chemistry Department, Aswan Faculty of Science, Aswan, Egypt
(Received 17 April 1989; accepted 30 June 1989)

ABSTRACT

New asymmetric and symmetric pyrazolo[3,4-d]pyrazole (and isoxazole) methine cyanines of the monomethine, azomethine and trimethine type were prepared. The new new dyes were characterised by IR and ¹H-NMR spectral data. The electronic spectra data of the dyes are discussed.

1 INTRODUCTION

Monomethine cyanines are used as photosensitisers in blue green¹⁻⁶ and they are also useful as analytical reagents over a wide pH range.⁷ Their biological activity is also of interest and they have been described as inhibitors of cell growth and division⁸ and as anticancer agents.⁹

Trimethine cyanines can be used as laser dyes¹⁰ and in light¹¹ and super photographic¹² sensitisers for silver halide emulsions, and also for producing offset printing plates.¹³

We report here the synthesis of some new asymmetric and symmetric monomethine and trimethine cyanines incorporating pyrazolo[3,4-d]-pyrazole (or isoxazole) moieties (viz. compounds 3a-3e, 4a-4e, 5a-5e, 6a-6e, 9a-9f and 10a-10f) on the basis that such dyes might exhibit a photosensitisation effect.

2 RESULTS AND DISCUSSION

Starting materials for the synthesis of the title compounds were the 3,4-dimethylpyrazolo[3,4-d]pyrazole (or isoxazole)-2,5-bis(ethyl iodides) 2a-2c.

These were obtained by quaternisation of the corresponding 3,4-dimethylpyrazolo[3,4-d]pyrazole (or isoxazole) derivatives (7a-7c)¹⁴ using excess ethyl iodide. Interaction of 2a-2c with equimolar or bimolar ratios of 1-methylpyridinium (quinolinium or isoquinolinium) iodide under piperidine catalysis afforded the corresponding asymmetric (and symmetric) monomethine cyanine (3a-3e, 4a-4e). These reactions are outlined in Scheme 1.

$$H_{3}C \longrightarrow CH_{3} \longrightarrow H_{3}C \longrightarrow CH_{3}$$

$$I_{1,2}: X = (a) N - Ph$$

$$I_{2a-2c} \longrightarrow (c) - O \longrightarrow (b) N - Ac$$

$$I_{3c} \longrightarrow CH \longrightarrow (b) N - Ac$$

$$I_{1a-1b} \longrightarrow CH \longrightarrow (c) - O \longrightarrow (c) - O \longrightarrow (c)$$

$$H_{3}C \longrightarrow (c) \longrightarrow (c) - O \longrightarrow (c)$$

$$H_{3}C \longrightarrow (c) \longrightarrow (c) \longrightarrow (c)$$

$$H_{3}C \longrightarrow (c) \longrightarrow (c)$$

$$I_{1a-1b} \longrightarrow (c)$$

$$I_{1$$

The structures of the compounds synthesised as shown in Scheme 1 were confirmed by elemental analyses and by IR and ¹H-NMR spectra data (Tables 1 and 4). The cyanine dyes 3a-3e and 4a-4e were highly coloured compounds ranging from reddish-violet to intense violet and they were soluble in polar solvents, in which they exhibited a green fluorescence. They underwent a reversible colour change (violet⇒yellow) in basic and acidic media.

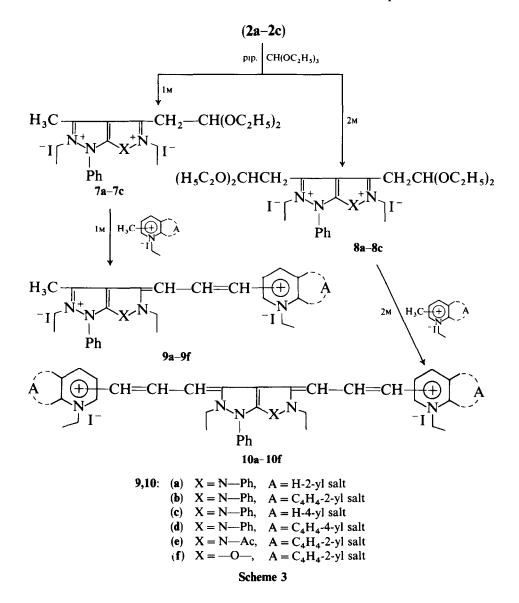
Absorption bands in the electronic spectra of 3a-3e and of 4a-4e in 95%

ethanol were dependent on the nature of both the heterocyclic quaternary salts (A) and the bis-heterocyclic system and also on the type of cyanine molecule, i.e. whether asymmetric or symmetric. For example, monomethine cyanines containing quinolinium or isoquinolinium iodide (3b-3e, 4b-4e) moieties were bathochromic with respect to the pyridinium iodide analogues 3a and 4a. The cyanine derivatives of pyrazolo[3,4-d]isoxazole (3e, 4e) were bathochromic by 20 nm compared with the pyrazolo[3,4-d]-N-acetyl (or phenyl)pyrazoles (3b, 3d; 4b, 4d); see Table 1. The symmetric cyanine 4b showed a red shift relative to the asymmetric cyanines 3b due to the increase in conjugation.

The reaction of compounds 2a-2c with equimolar bimolar ratios of nitroso compounds such as p-nitrosophenol and α - or β -nitroso- β (or α)-naphthol in the presence of piperidine as basic catalyst and ethanol as solvent afforded the corresponding asymmetric (and symmetric) 3-azomethine or 3,4-bis(azomethine) cyanines (5a-5c, 6a-6c) respectively. The reactions are outlined in Scheme 2.

The structures of these compounds (5a-5e, 6a-6e) were confirmed by elemental analysis and by IR and ¹H-NMR spectra data (Tables 2 and 4). They were reddish-violet to intense violet in colour and their solutions in polar solvents had an intense green fluorescence. The reversible colour change between acid and basic media was colourless to red respectively.

Electronic absorption maxima, in 95% ethanol, were as single broad


Characterisation Data for Pyrazolo [3,4-d]pyrazole (and Isoxazole) 2,4-yl Salt Moieties (2a-2c) and their 4-Asymmetric or Bis-3,4-symmetric Monomethine Cyanine Dyes (3a-3e, 4a-4e)

ompd	Compd M.p. (°C)	Yield (%)	Mol. formula	Analys	Analysis (%): Calcd/Found	l/Found	Absorption spe	Absorption spectra in 95% ethanol
			(mol. wt)	ر	Н	N	λ_{max} (nm)	$\varepsilon_{max} (m^{-1} cm^{-1})$
2a	210-212	59	C ₂₂ H ₂₆ N ₄ I ₂	0.44	4.3	9.3		
			(609)	(43.6)	(4·7)	(6.8)		
7 P	185–187	<i>L</i> 9	$C_{18}H_{24}N_4O_2I_2$	37.1	4.1	9.6	1	l
			(591)	(37-4)	(4-0)	(9.1)		
3 c	196–198	81	$C_{16}H_{21}N_3OI_2$	36.6	4.0	0.8	1	
			(525)	(37.0)	(4.25)	(7.8)		
3а	114–116	29	$C_{28}H_{31}N_5I_2$	48.6	4.5	10-1	525	2 800
			(1691)	(49.1)	(4·1)	(8.6)		
%	120-122	49	$C_{32}H_{33}N_5I_2$	51.8	4.45	9.45	460	8 000
			(741)	(52.2)	(4.9)	(6-6)		
ઝ	135-137	35	$C_{32}H_{33}N_5I_2$	51.8	4.45	9.45	455	2 880
			(741)	(52.1)	(4.6)	(10-0)		
퐀	205	29	$C_{28}H_{31}N_{5}O_{2}I_{2}$	46.5	4.3	4.6	445	7 320
			(723)	(45-8)	(4.5)	(9.3)		
3 e	180	32	$C_{26}H_{28}N_4OI_2$	46.9	4.2	8.4	480	7 260
			(999)	(47.2)	(4.5)	(8.8)		
4 a	150	33	$C_{34}H_{36}N_6I_2$	52.2	4.6	10.7	530	260
			(782)	(53.0)	(5·1)	(10.3)		
4	140	45	$C_{42}H_{40}N_6I_2$	57.1	4.5	9.5	470	2 600
			(882)	(58.0)	(5·1)	(10-0)		
4	110-112	35	$C_{42}H_{40}N_6I_2$	57.1	4.5	9.5	465	926
			(882)	(57-0)	(4·7)	(8.6)		
4 d	190–192	43	$C_{38}H_{38}N_6O_2I_2$	52.8	4.4	6.4	450, 520	11 200, 5 240
			(864)	(52-7)	(4.95)	(10.0)		
4 e	215	32	$C_{36}H_{35}N_5OI_2$	53.5	4.3	8.7	460	20 040
			(807)	(54:0)	(4.8)	(9.1)		

Characterisation Data for 4-Asymmetric and Bis-3,4-symmetric Pyrazolium[3,4-d]pyrazolium (and Isoxazolium) Azomethine Cyanine Dyes (5a-5e, 6a-6e) TABLE 2

Compd	Compd M.p. (°C)	Yield (%)	Mol. formula	Analysis	Analysis (%): Calcd (Found)	(Found)	Absorption speci	Absorption spectra in 95% ethanol
			(mor. wr)	S	Н	N	λ _{max} (nm)	Етах (т-1 ст-1)
Sa	220-222	33	C28H29N5OI2	47-7	4·1	6.6	490	8 120
			(705)	(48.1)	(3.9)	(10-3)		
S	170-172	46	$C_{32}H_{31}N_5OI_2$	50-9	4.1	9.3	510	8 400
			(755)	(49-45)	(4·3)	(9.1)	570sh	5 200
Š	184-182	43	C32H31N5OI2	50-9	4.1	9.3	520	0889
			(755)	(49.55)	(4.3)	(9.55)		
Z	110-112	39	C28H29N5O3I2	45.6	3.9	9.5	530	3 000
			(737)	(46.1)	(4.4)	(6-6)		
s,	175-177	37	C26H26N4O2I2	45.9	3.8	8.2	395	3860
			(089)	(46.3)	(3.75)	(8.65)	418	3840
8 9	145	53	$C_{34}H_{32}N_6O_2I_2$	50.4	3.95	10.4	520	3 440
			(810)	(50-1)	(4.45)	(6.6)		
9 9	112-114	61	C42H36N6O2I2	55.4	3.5	9.5	395, 419	4 600, 4 200
			(016)	(55.0)	(4.0)	(9.2)	520	3 4 2 0
જ	115-117	29	$C_{42}H_{36}N_6O_2I_2$	55.4	3.5	9.5	465	1 276
			(910)	(54·7)	(3.75)	(9.55)		
Z	118-120	59	$C_{38}H_{34}N_6O_4I_2$	51.1	3.8	4.6	505	3900
			(892)	(51-4)	(3.9)	(6-7)		
3	160-162	51	C36H31N5O3I2	51.7	3.7	8:3	420	4176
			(835)	(52.1)	(4·1)	(8·7)	525	2012

bands, which became more intense and showed a strong red in the dyes containing a naphthoyl residue (Table 2). The nature of the bis-heterocyclic system also influenced λ_{max} . Thus, the dye with an N-phenylpyrazole residue attached to another N-phenylpyrazole residue showed a blue shift of 20 nm compared with the 6-acetylpyrazole or isoxazole analogues (Table 2). Comparison of the absorption spectra of the asymmetric 3-azomethine cyanine (5b) and the symmetric 3,4-bis(azomethine)cyanine (6b) showed that 6b was the more bathochromic. This is due to the presence of two

electronic charge pathways in the symmetric type (6b) and to an increase in the overall conjugation.

Interaction of compounds 2a-2c with equimolar bimolar amounts of diphenylformamidine in the presence of acetic anhydride or with ethyl orthoformate in the presence of piperidine afforded compounds 7a-7c and 8a-8c respectively. These compounds are the key intermediates for the synthesis of the asymmetric or symmetric trimethine cyanines 9a-9f and 10a-10f through their condensation with equimolar bimolar ratios of 2- or 4-methyl quaternary salts under piperidine catalysis. The reactions are shown in Scheme 3.

Characterisation data for these compounds (7a, 9b, 10b) is shown in Tables 3 and 4. The dyes were reddish-violet to intense violet in colour and were soluble in polar solvents, in which they exhibited a green fluorescence. A reversible colour change (violet⇒yellow) occurred in basic and acidic media.

Absorption bands in 95% ethanol were intense and strong red shifts were observed for the dyes involving quinolinium-2 (or 4)-yl salts. The nature of the bis-heterocyclic system also influenced λ_{max} (Table 3). The symmetric trimethine (10a–10f) cyanines were more bathochromic than their asymmetric analogues 9a–9f.

Comparison of the absorption spectra of the asymmetric and symmetric trimethine cyanines (9b and 10b) with those of asymmetric and symmetric monomethine cyanines (3b and 4b) showed that the trimethine cyanines were red-shifted relative to the monomethine types. This is due to the increase in the number of methine groups between the N-ethyl group and the positively nitrogen heterocyclic quaternary salts, thus enhancing charge transfer.

3 EXPERIMENTAL

3.1 General

Melting points are uncorrected. IR spectra were determined on a Unicam SP 1200 spectrophotometer (KBr). Absorption spectra were recorded on a Shimadzu UV-VIS 240 recording spectrophotometer and ¹H-NMR spectra on an EM-390 90-MHz NMR spectrometer.

3,4-Dimethyl-1,6-diphenylpyrazolo[3,4-d]pyrazole and their derivatives (1a-1c) were prepared as previously described.¹⁴

3.2 Synthesis of 3,6-dimethylpyrazolium[3,4-d]pyrazolium and (isoxazolium)bis(2,4-yl) salt moieties (2a-2c)

Excess ethyl iodide was added to compounds 1a-1c. The reaction mixture was refluxed for 3-5 h on a water bath and the precipitate which formed was

Character	Characterisation Data fo	or the Intermed	diate Compounds (7a7c, 8a-8c) and their 3-Asymmetric or Bis-3,4 (or Isoxazolium) 2-(and 4)-Trimethine Cyanides (9a-9f, 10a-10f)	c, 8a-8c) and id 4)-Trimeth	their 3-Asyline Cyanide	mmetric or Bis ss (9a-9f, 10a-	-3,4-symmetric Pyra 10f)	or the Intermediate Compounds (7a7c, 8a-8c) and their 3-Asymmetric or Bis-3,4-symmetric Pyrazolo[3,4-d]pyrazolium (or Isoxazolium) 2-(and 4)-Trimethine Cyanides (9a-9f, 10a-10f)
Compd	Compd M.p. (°C)	Yield (%)	Mol. formula	Analysis	Analysis (%) Calcd (Found)	(Found)	Absorption spec	Absorption spectra in 95% ethanol
			(moi. wt)	C	Н	N	λ_{max} (nm)	$\varepsilon_{max} \left(m^{-1} cm^{-1} \right)$
7a	139–140	45	C ₂₇ H ₃₆ N ₄ O ₂ I ₂	46.15	5.1	8.6	*****	
			(702)	(46.0)	(5.2)	(10.3)		
J	118 - 120	57	$C_{23}H_{34}N_4O_4I_2$	40.35	4.8	8.0	I	I
			(684)	(40.6)	(5·1)	(8.3)		
7 c	140-142	53	$C_{21}H_{31}N_3O_3I_2$	40.2	4.95	6.7	-	***
			(627)	(40.3)	(5·1)	(7.1)		
æ	116 - 118	41	$C_{32}H_{46}N_{4}O_{4}I_{5}$	47.8	5.7	7.0	I	1
			(804)	(47.2)	(5·2)	(7.15)		
8	143-145	65	$C_{28}H_{44}N_4O_6I_2$	42.75	2.6	7.1	ı	I
			(982)	(43.0)	(5·1)	(7-0)		
ౙ	167–169	71	$C_{26}H_4$, $N_3O_5I_2$	42.8	2.6	5.8	******	ı
			(729)	(43.1)	(5.4)	(6·1)		
9a	120–122	21	$C_{31}H_{35}N_{5}I_{2}$	6-05	4.8	9.6	475	1004
			(731)	(51.23)	(5-3)	(10-0)		

9c 135 24 (781) (534) (4.25) (9.3) 696 9d 135 24 C ₃₁ H ₃ N ₃ I ₂ 50.9 4.8 9.6 495 9d 129-131 59 C ₃₈ H ₃ N ₃ I ₂ I ₄ (51.1) (52.2) (10.0) 555sh 9e 150-152 55 C ₃₁ H ₃ N ₃ O ₂ I ₂ (47.7) (49.0) 708 9f 186-188 44 C ₃₄ H ₃ N ₆ O ₂ I ₂ 47.75 46 9.2 518, 559 9f 186-188 44 C ₃₄ H ₃ N ₆ O ₁ 2 47.75 46 9.2 518, 559 9f 186-18 44 C ₃₄ H ₄ N ₆ O ₁ 2 47.75 46 9.2 518, 559 10a 188-170 28 C ₄₀ H ₄ H ₈ N ₆ I ₂ 556 5.1 9.7 480 10b 16a 178 56 5.4 5.0 8.7 520, 557 10b 189-101 55 C ₄₀ H ₄ H ₄ N ₆ N ₂ I ₂ 559 5.1 9.7 485 </th <th>96</th> <th>125–127</th> <th>92</th> <th>$C_{35}H_{37}N_5I_2$</th> <th>53.8</th> <th>4.7</th> <th>0.6</th> <th>510, 554, 660sh</th> <th>5030, 4198, 2800</th>	96	125–127	92	$C_{35}H_{37}N_5I_2$	53.8	4.7	0.6	510, 554, 660sh	5030, 4198, 2800
135 24 $C_{31}H_{35}N_{5}I_{2}$ $50\cdot9$ $4\cdot8$ $9\cdot6$ (731) $(51\cdot1)$ $(5\cdot2)$ $(10\cdot0)$ $129-131$ 59 $C_{35}H_{37}N_{5}I_{2}$ $53\cdot8$ $4\cdot7$ $9\cdot0$ $150-152$ 55 $C_{31}H_{35}N_{5}O_{2}I_{2}$ $47\cdot75$ 46 $9\cdot2$ $150-152$ 55 $C_{31}H_{35}N_{5}O_{2}I_{2}$ $47\cdot75$ 46 $9\cdot2$ $186-188$ 44 $C_{29}H_{32}N_{4}OI_{2}$ $47\cdot75$ 46 $9\cdot2$ $186-188$ 44 $C_{29}H_{32}N_{4}OI_{2}$ $49\cdot3$ $4\cdot7$ $(9\cdot3)$ $186-188$ 44 $C_{29}H_{32}N_{4}OI_{2}$ $49\cdot3$ $4\cdot7$ $(9\cdot3)$ $186-188$ 44 $C_{29}H_{34}N_{6}I_{2}$ $55\cdot6$ $5\cdot1$ $9\cdot7$ $188-170$ 56 $C_{40}H_{44}N_{6}I_{2}$ $55\cdot6$ $5\cdot1$ $9\cdot7$ $188-170$ 56 $C_{48}H_{48}N_{6}I_{2}$ $55\cdot6$ $5\cdot1$ $4\cdot8$ $9\cdot7$ $188-170$ 30 $C_{48}H_{48}N_{6}I_{2}$ $55\cdot6$ $5\cdot1$ $4\cdot8$ $9\cdot7$ $188-170$ 30 $C_{48}H_{48}N_{6}I_{2}$ $55\cdot6$ $5\cdot1$ $6\cdot1$ $189-191$ 51 $C_{44}H_{48}N_{6}O_{2}I_{2}$ $55\cdot9$ $4\cdot8$ $7\cdot9$ $189-191$ 51 $C_{42}H_{43}N_{5}OI_{2}$ $5\cdot1$ $(9\cdot1)$ $189-191$ 51 $C_{42}H_{43}N_{5}OI_{2}$ $(5\cdot1)$ $(5\cdot1)$ $(9\cdot0)$				(781)	(53-4)	(4.25)	(9.3)	969	1 460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>م</u>	135	24	$C_{31}H_{35}N_{5}I_{2}$	6-05	4·8	9.6	495	996
129–13159 $C_{35}H_{37}N_{5}I_{2}$ 53.8 4.7 90 (781) (781) (53.8) (4.7) (90) $150–152$ 55 $C_{31}H_{35}N_{5}O_{2}I_{2}$ 47.75 46 9.2 $186–188$ 44 $C_{29}H_{32}N_{4}OI_{2}$ 49.3 4.5 4.9 $186–188$ 44 $C_{29}H_{43}N_{4}OI_{2}$ 49.3 4.5 7.9 $186–190$ 28 $C_{40}H_{44}N_{6}I_{2}$ 55.6 5.1 9.7 $186–170$ 56 $C_{48}H_{48}N_{6}I_{2}$ 59.9 5.0 8.7 $100–102$ 30 $C_{40}H_{44}N_{6}I_{2}$ 55.6 5.1 9.7 11 148 59 $C_{40}H_{44}N_{6}I_{2}$ 55.9 5.0 8.7 $100–102$ 30 $C_{40}H_{44}N_{6}I_{2}$ 55.9 5.0 8.7 11 148 59 $C_{48}H_{48}N_{6}I_{2}$ 55.9 5.0 8.7 11 148 59 $C_{44}H_{46}N_{6}O_{2}I_{2}$ 55.9 4.8 8.9 11				(731)	(51.1)	(5.2)	(10.0)	555sh	009
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	%	129-131	59	$C_{35}H_{37}N_5I_2$	53.8	4.7	0.6	590, 670	2 596, 4 460
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(781)	(53-8)	(4·7)	(0.6)	208	2 560
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 e	150-152	55	$C_{31}H_{35}N_5O_2I_2$	47.75	4.6	9.2	518, 559	9 000, 11 520
186–188 44 $C_{29}H_{32}N_4OI_2$ 49·3 4·5 7·9 108–110 28 $C_{40}H_4N_6I_2$ 55·6 5·1 9·7 862) (862) (56·1) (5·45) (100) 9 (862) (56·1) (5·45) (100) 168–170 56 $C_{48}H_{48}N_6I_2$ 59·9 5·0 8·7 100–102 30 $C_{40}H_{44}N_6I_2$ 55·6 5·1 9·7 1 148 59 $C_{40}H_{48}N_6I_2$ 55·9 5·0 8·7 1 148 59 $C_{48}H_{48}N_6I_2$ 55·9 5·0 8·7 1 148 59 $C_{48}H_{48}N_6I_2$ 55·9 5·0 8·7 2 178 54 $C_{44}H_{46}N_6O_2I_2$ 55·9 4·8 8·9 3 178 51 $C_{44}H_{46}N_6O_2I_2$ 55·9 4·8 8·9 4 189–191 51 $C_{42}H_{43}N_5OI_2$ 55·1 (5·1) (9·0) 4 189–191 51 $C_{42}H_{43}N_5OI_2$ (5·7·1) (5·1) <				(49·13)	(49·1)	(5·1)	(9.3)	565	2 640
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 6	186-188	4	$C_{29}H_{32}N_4OI_2$	49.3	4.5	4.6	517	11 640
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(907)	(48·1)	(4·7)	(8.05)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10a	108 - 110	28	$C_{40}H_{44}N_6I_2$	55.6	5·1	2.6	480	926
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(862)	(56·1)	(5.45)	(10.0)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10b	168-170	99	$C_{48}H_{48}N_6I_2$	6.65	2.0	8.7	520, 557	12 040, 18 800
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(962)	(59·1)	(4.8)	(9·1)	869	1 260
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10c	100-102	30	$C_{40}H_{44}N_6I_2$	9.55	5.1	7.6	485	1 096
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(862)	(55.9)	(5.25)	(10.2)	640sh	240
$(962) \qquad (997) \qquad (4\cdot65) \qquad (9\cdot2)$ $178 \qquad 54 \qquad C_{44}H_{46}N_6O_2I_2 \qquad 55\cdot9 \qquad 4\cdot8 \qquad 8\cdot9 \qquad 5\cdot9 \qquad (9\cdot4) \qquad (56\cdot35) \qquad (5\cdot1) \qquad (9\cdot1)$ $189-191 \qquad 51 \qquad C_{42}H_{43}N_5OI_2 \qquad 56\cdot8 \qquad 4\cdot85 \qquad 7\cdot9 \qquad (887) \qquad (57\cdot1) \qquad (9\cdot0)$	10d	148	59	$C_{48}H_{48}N_6I_2$	6.65	2.0	8.7	595, 673	3 600, 6 300
178 54 $C_{44}H_{46}N_6O_2I_2$ 55.9 4.8 8.9 5.0 (944) (56.35) (5.1) (9.1) (89–191 51 $C_{42}H_{43}N_5OI_2$ 56.8 4.85 7.9 (887) (57.1) (5.1) (9.0)				(662)	(59-7)	(4.65)	(9·2)	8-60/	5 2 4 8
$(944) \qquad (56.35) \qquad (5.1) \qquad (9.1)$ $189-191 \qquad 51 \qquad C_{42}H_{43}N_5OI_2 \qquad 56.8 \qquad 4.85 \qquad 7.9$ $(887) \qquad (57.1) \qquad (5.1) \qquad (9.0)$	10e	178	54	$C_{44}H_{46}N_6O_2I_2$	55.9	4 ·8	6.8	512, 555, 585	11 160, 10 860, 9 600
$189-191$ 51 $C_{42}H_{43}N_{5}OI_{2}$ 56·8 4·85 7·9 (87) (57·1) (5·1) (9·0)				(944)	(56.35)	(5·1)	(9·1)	640sh	1 480
(57.1) (5.1)	10 f	189–191	51	$C_{42}H_{43}N_5OI_2$	8.95	4.85	7.9	511	18 400
				(887)	(57-1)	(5·1)	(0.6)		

TABLE 4 IR and ¹H-NMR Spectra Data of Selected Dyes

Compd	$IR (v_{max}^{KBr} (cm^{-1})^a)$	^{1}H -NMR (DMSO), δ (ppm) b
2a	1 610-1 600 (C=C)	6·4-6·8 (m, 10H, arom. rings)
	2980-2940 (ethiodide)	1·8-2·4 (m, 10H, ethiodide)
		1·2 (s, 6H, CH ₃)
2b	1 620–1 600 (C=C)	7·2-7·9 (m, 5H, arom. ring)
		1.6-1.8 (m, 10H, ethiodide)
3d	1 620–1 600 (C=C)	6.4-6.8 (m, 10H, arom. + hetero)
	2980-2940 (ethiodide)	2.5-2.6 (s, 3H, CH ₃ I)
		$1.9-2.5$ (t, q, 5H, CH_3CH_2I)
		1·7 (s, 7H, CH=)
		1.05-1.5 (t, q, 5H, CH ₃ CH ₂)
		0.7 (s, 3H, CH ₃)
4b	1 640–1 610 (C=C)	7.0-7.8 (m, 11H, arom. + hetero)
	2980-2940 (ethiodide)	$2\cdot 1-2\cdot 5$ (m, 6H, CH ₃ I)
		1.9 (s, 2H, CH=)
		1.3-1.8 (t, q, 10H, CH ₃ CH ₂)
5e	1 640–1 600 (C=C)	7·5–8·2 (m, 11H, arom. rings)
	1 725–1 700 (C=N)	2·01-3·1 (t, q, 10H, ethiodide)
	2980-2940 (ethiodide)	1.3-1.4 (s, 3H, CH ₃)
		1.6-1.8 (s, 7H, CH=N)
6e	1 630–1 600 (C=C)	7·2-8·2 (m, 17H, arom. rings)
	1 720-1 700 (C=N)	$2\cdot01-3\cdot1$ (t, q, 10H, ethiodide)
	2980-2940 (ethiodide)	1·57 (s, 2H, CH=N)
8a	1 600 (C=C)	7·4-7·9 (m, 10H, arom. rings)
	1 725-1 700 (C=N)	2·4 (d, 4H, CH=CH)
	2980-2940 (ethiodide)	$2\cdot 1-2\cdot 3$ (t, q, 10H, CH ₃ , CH ₂ I)
		$0.9-1.4$ (m, 10H, CH_3CH_2)
9b	1 620–1 600 (C==C)	7.2-7.9 (m, 16H, arom. + hetero)
	1 725-1 700 (C=N)	2·0-2·6 (t, q, 5H, CH ₃ CH ₂ I)
	2980-2940 (ethiodide)	1·5–1·7 (t, 3H, ==CHCH=-CH)
		1·3 (s, 3H, CH ₃)
		0.7-1.1 (m, 5H, CH ₃ CH ₂)
10b	1 620–1 600 (C==C)	7.3-8.1 (m, 22H, arom. + hetero)
	1 725-1 700 (C=N)	1·7-2·4 (t, q, 5H, CH ₃ CH ₂ I)
	2975-2940 (ethiodide)	1·4–1·6 (t, 3H, ==CHCH=-CH)
		0·9-1·3 (m, 5H, CH ₃ CH ₂)

^a Ref. 15. ^b Ref. 16.

filtered, washed by ether, triturated with ethanol by refluxing, filtered hot, concentrated and cooled. The product which precipitated after dilution with water were collected and recrystallised from ethanol. Characterisation data for them are given in Table 1.

3.3 Synthesis of asymmetric (and symmetric) pyrazolium [3,4-d] pyrazolium (and isoxazolium) 2(and 4)-yl salt 4(and bis-3,4)-monomethine cyanine moieties (3a-3e, 4a-4a)

A mixture of 2a-2c (0·01 mol) and equimolar or bimolar ratios of the appropriate methyl quaternary salt (pyridinium, quinolinium and/or isoquinolinium iodide) (0·01 or 0·02 mol) were dissolved in ethanol (40 ml), and piperidine (3-5 drops) was added. The reaction mixture was refluxed for 10-12 h, filtered hot, concentrated and cooled. The products were precipitated on dilution with water and were recrystallised from ethanol to give 3a-3e and 4a-4e respectively. Relevant data for them are given in Table 1.

3.4 Synthesis of asymmetric (and symmetric) pyrazolium [3,4-d] pyrazolium (and isoxazolium) 2(and 4)-yl salt 4(and bis-3,4)-azomethine cyanine moieties (5a-5e, 6a-6e)

A mixture of 2a-2c (0.01 mol) and equimolar or bimolar ratios of p-nitrosophenol or $\alpha(\text{or }\beta)$ -nitroso- $\beta(\text{or }\alpha)$ -naphthol (0.01 or 0.02 mol) in ethanol (25 ml), was treated with piperidine (3-5 drops). The reaction mixture was refluxed for 6-8 h. The separation of the products was carried out in a way similar to that described above. Characterisation data for the products are given in Table 2.

3.5 Synthesis of asymmetric (and symmetric) pyrazolium [3,4-d] pyrazolium (and isoxazolium) 4(and bis-3,4)-trimethine 2(and 4)-cyanine moieties (9a-9f, 10a-10f)

Method A

A mixture of 2a-2c (0.01 mol) and equimolar or bimolar ratios of ethyl orthoformate (0.01 mol or 0.02 mol) in ethanol (25 ml) and piperidine (3-5 drops) was refluxed for 4-6h. The reaction mixture was filtered hot, concentrated and cooled. The products were precipitated with water, filtered, washed with water and recrystallised from aqueous ethanol to give 7a-7c and 8a-8c. Characterisation data are shown in Table 3.

Method B

A mixture of 7a-7c, or 8a-8c (0.01 mol) and the appropriate 2- (or 4-)methyl

quaternary salts $[\alpha(\gamma)$ -picoline, quinaldine and/or lipidine ethyl iodide, 0·01 or 0·02 mol] in ethanol (40 ml) and piperidine (4–6 drops) was refluxed for 8–10 h. The products were separated in similar manner to that described for earlier experiments. Relevant data for the compounds thus obtained are given in Table 3.

REFERENCES

- 1. Tolmachev, A. I. & Karoban, E. F., Ukr. Khim. Zh., 36 (1970) 478.
- 2. Kozlov, N. S., Zhikhareva, O. D. & Batische, S. A., Khim. Geterotski Soedin, 12 (1972) 1619.
- 3. Hammer, F. M., J. Chem. Soc. (1928) 206.
- 4. Brooker, L. G. S. & Keyes, G. H., J. Am. Chem. Soc., 57 (1935) 2488.
- 5. Brooker, L. G. S., Keyes, G. H. & White, F. L., J. Am. Chem. Soc., 57 (1935) 2492.
- 6. Eastman Kodak Co., US Patent 1969 446 (1934); US Patent 2143 889 (1939).
- Fakhonov, A. S., Anisimova, A. A., Bagdasarov, K. N. & Chernov'yants, M. S., Zh. Anal. Khim., 39 (1984) 1040.
- 8. Zigman, S. & Gilman, P., Jr, Science (Washington, DC) 208 (1980) 188.
- Japan Photosensitive Dyes Co. Ltd, Kokai Tokyo Koho. Patent 79 157 839 (1979); Chem. Abstr., 93 (1980) 195325.
- Dgdyusha, G. G., Zubarovskii, V. M., Moreiko, O. V., Prahonskaya, O. V., Sych,
 E. D., Tikhonov, E. A. & Khodot, G. P., USSR Patent 568318 (1978); Appln 2157563 (1975); Chem. Abstr., 90 (1979) 46509j.
- Konishiroko Photo Industry Ltd, German Offen. 2734335 (1978); Chem. Abstr., 88 (1978) 161442c.
- Konishiroku Photo Industry Ltd, German Offen. 2 600 968 (1976); Chem. Abstr., 86 (1977) 49175a.
- 13. Mitsubishi Paper Mills Ltd, US Patent 4 134 769 (1979); Chem. Abstr., 90 (1979) 213240y.
- Soliman, E. A., Abdalla, M. M., Mohamed, M. M. & El-Gendy, A. M., *Indian J. Chem.*, 16B (1978) 505.
- 15. Bellamy, L. J., *The Infrared Spectra of Complex Molecules*. Methuen, London, 1962, p. 249.
- 16. Schimann, F., *Nuclear Magnetic Resonance of Complex Molecules*, Vol. 1. Viewag and Sohn GmbH, Braunschweig, Austria, 1970, pp. 41–70.